Anomeric Manipulation of Nucleosides: Stereosepecific Entry to 1'-C-Branched Uracil Nucleosides

Kazuhiro Haraguchi, Yoshiharu Itoh, Hiromichi Tanaka,* Kentaro Yamaguchi, and Tadashi Miyasaka

School of Pharmaceutical Sciences, Showa University, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142, Japan

Keywords: 1',2'-unsaturated nucleoside; 1'-C-branched uracil nucleoside; electrophilic addition; organosilicon reagent; C-C bond formation.

A bstract: Uracil nucleosides variously branched at the anomeric position have been synthesized through stereoselective bromo-pivaloyloxylation of a 1',2'-unsaturated derivative and successive SnCl4-promoted nucleophilic substitution with organosilicon reagents. This constitutes the first example of C-C bond formation at the anomeric position of nucleoside.

Despite the fact that there have been ample precedents for the preparation of unsaturated-sugar nucleosides, their synthetic utility had mostly been limited to simple electrophilic addition reactions with which only noncarbon substituents can be introduced.¹ We have demonstrated through several publications² that certain compounds involved in this class serve as versatile starting materials for C-C bond formation in the sugar portion of nucleosides.³

Quite recently, a SnCl₄-promoted allylic rearrangement of the 3',4'-unsaturated uracil nucleoside 1 with organosilicon reagents has been reported, which provides a new synthetic route to a series of 4'-C-branched derivatives (2).⁴ One would anticipate that a simple application of this reaction to the 1',2'-unsaturated derivative 3^{5} could lead to the formation of 1'-C-branched products. However, in accord with the reported instability of 1',2'-unsaturated nucleosides,^{5a} when 3 was treated with allyltrimethylsilane in the presence of SnCl₄ (in CH₂Cl₂, below -70 °C, for 1 h), the sole product appeared to be an elimination product 4 (42%). This observation led us to devise an alternative approach to a C-C bond forming reaction at the anomeric position.

We assumed that Lewis acid-mediated nucleophilic substitution using organosilicon reagents might be one promising synthetic operation to introduce carbon functionalities to the anomeric position.⁶ To accomplish this reaction stereoselectively, the presence of a Cl'-leaving group as well as a C2'- β -substituent that exerts an anchimeric assistance would be indispensable.

We started with acetoxy-selenation of 3 in order to accommodate these requirements. Compound 3 was treated with PhSeCl and AgOAc in toluene at room temperature.⁷ Although the reaction went to completion within a few minutes, attempted chromatographic isolation gave none of the desired adducts, but instead two decomposition products 5 (5%) and 6 (3%) were obtained. Formation of 6 can be explicable, at least in part, in terms of the α -anion stabilizing effect of selenium atom⁸ that facilitates elimination of AcOH. Acetoxy-bromination of 3 by using NBS and AcOH in CH₂Cl₂ also failed due to the instability of the adducts which decomposed to uracil and 7 (33%) during silica gel column chromatography. We found the use of pivalic acid in place of AcOH enabled isolation of the adducts. Thus, when 3 was reacted with NBS (2 equiv.) and pivalic acid (5 equiv.) in CH₂Cl₂, a mixture of four possible diastereoisomers (8-11, 66%) was obtained after silica gel column chromatography (entry 1 in Table 1). These were separated by HPLC. Compound 8 was crystallized from EtOAc-hexane (mp 157-159 °C) and its stereochemistry was determined based on X-ray crystallographic

Table 1.	Bromo-	pivaloyl	oxvlation	of 3."))
----------	--------	----------	-----------	---------	---

Entry	Solvent	pivalic acid (equiv.)	NBS (equiv.)	Yield (%)	Ratio of diastereomers ^{b)} (8:9:10:11)	Ratio of anti / syn	Face-selectivity (β / α)
1	CH ₂ Cl ₂	5	2	66	62:6:26:6	7.3/1	2.1/1
2	benzene	5.4	2	67	45:35:12:8	1.3/1	4/1
3	CH ₂ Cl ₂	22	1.3	80	54 : 18 : 19 : 9	2.7 / 1	2.6/1
4	ElOAc	25	1.2	77	37:38:7:18	1/1.3	3/1
5	dioxane	25	1.2	80	33:48:7:12	1/1.5	4.3/1
6	ether	24	1.2	82	33:50:4:13	1/1.7	4.9/1
7 ^{c)}	ether	5	1.2	91	82:1:17:0	99/1	4.9/1

11 R^1 = uracil-1-yl, R^2 = OC(O)CMe₂, R^3 = H, R^4 = Br

^{a)} All reactions were carried out at room temperature for 0.5 h.

b) Calculated based on ¹H NMR spectroscopy by integrating H-6.

c) Triethylamine (5 equiv.) was added.

analysis. In the case of 11, its conversion to an O^2 , 2'-anhydro derivative upon brief treatment with DBU in CH₂Cl₂ gave confirmation for the structure. The assignment of the structures to 9 and 10 was done by analogy to 8 and 11, respectively, in their ¹H NMR spectra.

As can be seen from entries 1-6 in Table 1, the incipient bromonium ion was formed preferentially at the β -face irrespective of the solvent employed, whereas the ratios of *anti- vs. syn-addition* are variable, presumably reflecting the extent of intervention of an oxonium intermediate. Ether gave the highest face-selectivity (entry 6). Furthermore, as shown in entry 7, almost exclusive *anti-addition* could be attained by adding Et₃N which increases nucleophilicity of pivalic acid. When the reaction of 3 was carried out in a fairly large scale (20-30 mmol) under the conditions given in entry 7, 8 was isolated in 55% yield simply by short column chromatographic workup followed by crystallization.

Compound 8 was reacted with various types of organosilicon reagents in CH₂Cl₂ in the presence of SnCl₄ as shown in Chart 1 (isolated yields are shown in parentheses). When allyltrimethylsilane was used, the desired 1'-C-allyl derivative 12 was accompanied by a highly polar product.⁹ The ¹H NMR and MS spectra of this product were in good agreement with 13, the structure of which indicated that an intramolecular trap of the silicon-stabilized β -carbocation intermediate with the base moiety had taken place.¹⁰ Both 12 and 13 gave the same O^2 ,2'-anhydro derivative 14 upon treatment with TBAF in THF.¹¹ Other organosilicon reagents including silyl enol ethers also work in the reaction with 8 to furnish 15-19. It should deserve a comment that isomeric products derived from β -face attack of the nucleophiles were hardly detectable throughout these reactions.

In conclusion, we have disclosed here a C-C bond forming reaction at the anomeric position of nucleoside for the first time. By taking advantage of the presence of "2'-up" bromine atom in the resulting 1'-C-branched products, further transformations to the derivatives having ribo- (20), arabino- (21), and 2'-deoxyribo- (22) configurations would be possible. Although occurrence of angustmycins A and C as antibiotics stimulated the synthesis of this type of nucleosides,¹² the methods so far available involve initial preparation of an appropriate sugar precursor which is then condensed with a nucleobase to yield both α - and β -anomers in most cases.¹³

Acknowledgement. The authors are grateful to Professor Akira Hosomi, Department of Chemistry, University of Tsukuba, for helpful advice on the preparation of allylsilanes. This work has been financially supported by Grant-in-Aid (No. 05771933, to K. H.) from the Ministry of Education, Science and Culture and also in part by the Daiwa Anglo-Japanese Foundation (to H. T.).

References and Notes

- 1. For a review: Moffatt, J. G. Nucleoside Analogues; Walker, R. T.; De Clercq, E.; Eckstein, F. Eds; Plenum Publishing Corp.: 1979; pp. 71-164.
- a) Haraguchi, K.; Tanaka, H.; Miyasaka, T. Tetrahedron Lett. 1990, 31, 227-230. b) Haraguchi, K.; Tanaka, H.; Itoh, Y.; Miyasaka, T. Ibid. 1991, 32, 777-780. c) Haraguchi, K.; Itoh, Y.; Tanaka, H.; Miyasaka, T. Ibid. 1991, 32, 3391-3394. d) Haraguchi, K.; Itoh, Y.; Tanaka, H.; Akita, M.; Miyasaka, T. Tetrahedron 1993, 49, 1371-1390.
- Nucleosidic α,β-unsaturated selenones have been used for the introduction of carbon substituents to the sugar portion. a) Wu, J.-C.; Chattopadhyaya, J. *Tetrahedron* 1989, 45, 4507-4522. b) Tong, W.; Xi, Z.; Gioeli, C.; Chattopadhyaya, J. *Ibid.* 1991, 47, 3431-3450.
- 4. Haraguchi, K.; Tanaka, H.; Itoh, Y.; Saito, S.; Miyasaka, T. Tetrahedron Lett. 1992, 33, 2841-2844.
- a) Robins, M. J.; Trip, E. M. Tetrahedron Lett 1974, 3369-3372. b) Haraguchi, K.; Tanaka, H.; Maeda, H.; Itoh, Y.; Saito, S.; Miyasaka, T. J. Org. Chem. 1991, 56, 5401-5408.
- 6. For an example: Kozikowski, A. P.; Sorgi, K. L. Tetrahedron Lett. 1984, 25, 2085-2088.
- 7. Very recently, an electrophilic addition of PhSeCl to furanoid glycals has been used for the synthesis of 2'deoxynucleosides: El-Laghdach, A.; Díaz, Y.; Castillón, S. *Tetrahedron Lett.* **1993**, *34*, 2821-2822.
- 8. Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis, Pergamon Press: Oxford, 1986.
- 9. A typical procedure is given below for the synthesis of 12. To a mixture of 8 (500 mg, 0.79 mmol) and allyltrimethylsilane (628 μL, 3.95 mmol) in CH₂Cl₂ (30 mL), SnCl₄ (1.03 mmol, CH₂Cl₂ solution) was added at -40 °C. The reaction mixture was allowed to warm to -20 °C over 2 h, quenched with aqueous NaHCO₃ and chromatographed on a silica gel column (10-50% EtOAc in hexane). This gave 12 (295 mg, 65%) and 13 (126 mg, 25%).
- 10. A similar cyclization has been observed in the reaction between perfluoroacetone and allyltrimethylsilane: Abel, E. W.; Rowley, R. J. J. Organomet. Chem. 1975, 84, 199-229.
- Compound 14 was isolated as its 3',5'-di-O-acetyl derivative, the stereochemistry of which was confirmed by X-ray crystallography. The atomic coordinates for the acetate are available on request from the Cambridge Crystallographic Data Centre, University of Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.
- 12. Buchanan, J. G.; Wightman, R. H. The Chemistry of Nucleoside Antibiotics. In *Topics in Antibiotic Chemistry*; Sammes, P. G., Ed.; John Wiley and Sons, Inc.: New York, 1982; Vol. 6, pp. 253-255.
- For several recent examples: a) Yoshimura, Y.; Ueda, T.; Matsuda, A. Tetrahedron Lett. 1991, 35, 4549-4552. b) Mahmood, K.; Vasella, A.; Bernet, B. Helv. Chim. Acta 1991, 74, 1555-1584. c) Elliott, R. D.; Niwas, S.; Riordan, J. M.; Montgomery, J. A.; Secrist III, J. A. Nucleosides Nucleotides 1992, 11, 97-119. d) Faivre-Buet, V.; Grouiller, A.; Descotes, G. Ibid. 1992, 11, 1651-1660.